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Abstract 

Recently, Miao and Wang [Journal of Applied Mathematics and Computing, 35(2011):459-468] studied the convergence of the 

generalized stationary iterative (GSI) method for solving the saddle point problems. In this paper, based on Miao and Wang’s 

convergence theorem, we perfect it and give new convergence conditions. Moveover, by using relaxation technique, we present an 

improved generalized stationary iterative (IGSI) method for solving the saddlepoint problems and analyze the convergence of the 
corresponding method. 
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1 Introduction 

 
Consider the saddle point problems of the form 
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where 
mmRA   is symmetric positive definite, nmRB   

be of full column rank and mRb and nRq are given 

vectors, with nm  . 

    Systems of the form (1) appears in many different 

applications of scientific computing, such as constrained 

optimization [1], the finite element method for solving 

the  Navier-Stokes equation [2-4], and constrained least 

squares problems and generalized least squares problems 

[5-8]. There have been several recent papers [9-37] for 

solving the augmented system (1). Santos et al. [6] 

studied preconditioned iterative methods for solving the 

augmented system (1) with A = I. Yuan et al. [7, 8] 

proposed several variants of SOR method and 

preconditioned conjugate gradient methods for solving 

general augmented system (1) arising from generalized 

least squares problems where A  can be symmetric and 

positive Semide finite and B  can be rank deficient. The 

SOR-like method requires less arithmetic work per 

iteration step than other methods but it requires choosing 

an optimal iteration parameter in order to achieve a 

comparable rate of convergence. Golub et al. [20] 

presented SOR-like algorithms for solving system (1).  

Darvishi et al. [19] studied SSOR method for solving the 

augmented systems. Bai et al. [9, 10, 18, 36] presented 

GSOR method, parameterized Uzawa (PU) and the 

inexact parameterized Uzawa (PIU) methods for solving 

systems (1). Zhang and Lu [27] showed the generalized 

symmetric SOR method for augmented systems. Peng 

and Li [23] studied unsymmetric block overrelaxation-

type methods for saddle point. Bai and Golub [11-15, 24] 

presented splitting iteration methods such as Hermitian 

and skew-Hermitian splitting (HSS) iteration scheme and 

its preconditioned variants, Krylov subspace methods 

such as preconditioned conjugate gradient (PCG), 

preconditioned MINRES (PMINRES) and restrictively 

preconditioned conjugate gradient (RPCG) iteration 

schemes, and preconditioning techniques related to 

Krylov subspace methods such as HSS, block-diagonal, 

block-triangular and constraint preconditioners and so on. 

Bai and Wang’s 

2009 LAA paper [24] and Chen and Jiang’s 2008 

AMC paper [18] studied some general approaches about 

the relaxed splitting iteration methods. Wu, Huang and 

Zhao [25] presented modified SSOR (MSSOR) method 

for augmented systems (1). Zhang et al. [28, 29] 

established a generalized MSSOR (GMSSOR) method 

for augmented systems and analyze convergence of the 

corresponding method. Recently, Miao et al. [22] studied 

the convergence of the generalized stationary iterative 

(GSI) method. 

     In this paper, we establish an improved generalized 

stationary iterative (IGSI) method for solving the saddle 

point problems and analyze convergence of the 

corresponding method. Moreover, based on Miao and 

Wang’s convergence theorem [22], we perfect it and give 

new convergence conditions. 
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2 Improved GSI method 

 

For the sake of simplicity, Golub et al. [20] rewrite 

system (1) as: 
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Recently, for the coefficient matrix of the augmented 

system (1), Miao et al. [22] make the following splitting: 
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where   and    are real parameters with 0 ,  

Q is a nonsingular matrix. 

       Based the above splitting, by using relaxation 

technique, we propose the following splitting: 
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where  ,   and  are real parameters with 0 , 

0 ,Q is a nonsingular matrix. Then we can obtain the 

following improved generalized stationary iterative 

(IGSI) scheme: 
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is the IGSI iterative matrix. 

Improved GSI method: Let nnRQ   be a nonsingular 

and symmetric matrix. Given initial vectors 
mRx )0(

and 
nRx )0(

 and three relaxed  parameters 

0 , 0 and 0  .For k = 0,1,2,... until the 

iteration sequence }))(y,){((x TTkTk  converges,  

compute 

 

 

















})1({
1

),(
1

)
1

1(

)()1(1)()1(

)(1)()1(

qxxBQyy

BybAxx

kkTkk

kkk




  

 

and Q is an approximate (preconditioning) matrix of the 

Schur complement matrix BABT 1 . 

Remark 2.1 When the relaxed parameters   , IGSI 

method reduces to GSI method; When  



1

  and  

1 ; IGSI method reduces to SOR-like method [16]. 

When



1

  and  



  , IGSI-like method reduces 

to GAOR method [21]. So, IGSI method is the 

generalization of these methods. Furthermore, IGSI 

method with appropriate parameters will have better 

convergence rate. 

 

3 Convergence of IGSI method 

 

Lemma 3.1 [26] Consider the quadratic equation 

02  cbxx ,where b and c are real numbers. Both 

roots of the equation are less than one in modulus if and 

only if 1c  and c1b . 

Lemma 3.2 [22] Let  ,H  be the iteration matrix of GSI 

method . If  nm  ,then  

(i)



1

-1  is an eigenvalue of  ,H  at  least with 

multiplicity of m −  n; 

(ii) The other eigenvalues   of  ,H determined by the 

functional equation 
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Recently, based the splitting scheme (3) and the 

equation (6), Miao et al. [22] gave the following 

convergence Theorem: 

 

Theorem 3.3  [22] Let A and Q be symmetric positive 

definite, and B be of full column rank. Suppose that all 

eigenvalues  of BABQ T 11   are real and positive. 

Denote the largest eigenvalues of the matrix 


of 

BABQ T 11 

 by  max
. Then the GSI method is 

convergence if  and 


satisfy 
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Through analyzing the proving process of Theorem 

3.3, we further perfect it and give new convergence 

conditions, which is as follows. 
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Theorem 3.4 Let A and Q be symmetric positive definite 

and symmetric, respectively, and B be of full column 

rank. Suppose that all eigenvalues   of BABQ T 11   are 

real and negative. Denote the largest eigenvalues of the 

matrix  of BABQ T 11   by max : Then the GSI method 

is convergence if  

 and  satisfy 
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Proof Let )( , H  and 0 .Then 
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0)1()2( 2222    

By Lemma 3.1, 1  if and only if 
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From (10), we can obtain 
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In terms of (11) and (12), and note that (9) is valid, then 
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Meanwhile, in order that there is an  satisfying (8), 

max

1



  should be great than  

m a x

)12(
-

2

1



 
  or 

equality,
2

- max
  ; thus should be 

}
2

-
,

2

1
max{

max
  . 

Based on the IGSI method and using the similar 

proving process of Theorem 3.4 [22], we give the 

following convergence Theorem. Moreover, we may 

ensure that Q is symmetric positive definite. 

 

Theorem 3.5 Let H be the iteration matrix of IGSI 

method. If m > n; then 

(i) 



1

-1 is an eigenvalue of H at least with 

multiplicity of  m −  n; 

(ii) The other eigenvalues H determined by the 

functional equation 

))(1()1(   ,         (13) 

where 
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Proof Using the similar proving process, we easily get 

the above conclusion. 

 

Theorem 3.6 Let A and Q be symmetric positive definite, 

and B be of full column rank. Suppose that all 

eigenvalues   of BABQ T 11   are real and positive. 

Denote the largest eigenvalues of the matrix   of 

BABQ T 11  by max : Then the IGSI method is 

convergence if the parameters satisfy 
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Proof  Let H  and 0 , Then 
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From (16), we can obtain 
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In terms of (17) and (18), and note that (15) is valid, 

then 
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